STUDIO DI GEOLOGIA

Dott. Geol. Mattia Coccagna

Via Ugo Foscolo, 4 64046 Montorio al Vomano (TE)

Tel.: 3286456669

email: mattia.coccagna@geologiabruzzo.org

Pec: mattiacoccagna@pec.it

COMUNE DI MONTORIO AL VOMANO PROVINCIA DI TERAMO

STUDIO DI FATTIBILITA' GEOLOGICA, GEOMORFOLOGICA, IDROGEOLOGICA E SISMICA PER LA RICHIESTA DI VARIANTE AL P.R.G. PER LA RIGENERAZIONE URBANA DI VIA FERRARI DI MONTORIO AL VOMANO (TE)

Relazione di pre-fattibilità geologica, geomorfologica, idrogeologica e sismica

Committente: COMUNE DI MONTORIO AL VOMANO

Montorio al Vomano (TE), maggio 2022

Dott. Geol. Mattia Coccagna

REDAZIONE DI UNO STUDIO DI PRE-FATTIBILITA' GEOLOGICA, GEOMORFOLOGICA, IDROGEOLOGICA PER LA RICHIESTA DI VARIANTE AL PIANO REGOLATORE GENERALE PER LA RIGENERAZIONE URBANA DI VIA FERRARI DI MONTORIO AL VOMANO (TE).

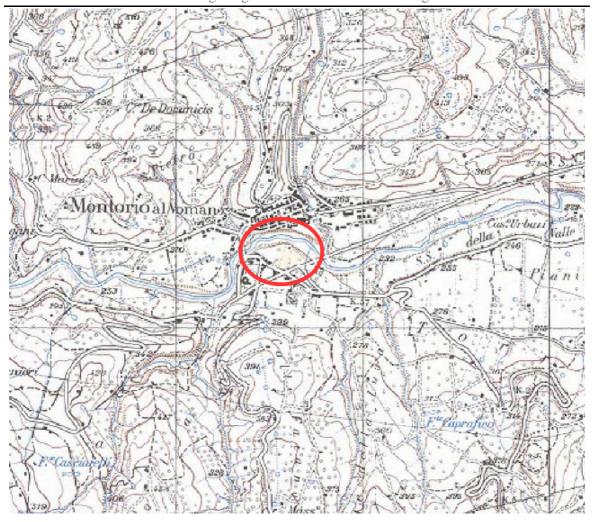
COMMITTENTE: COMUNE DI MONTORIO AL VOMANO

INDICE

1	- Premessa	pag. 3
2	- Geologia	pag. 7
3	- Geomorfologia	pag. 14
4	- Sismicità	pag. 20
5	- Considerazioni finali	pag. 29

REDAZIONE DI UNO STUDIO DI PRE-FATTIBILITA' GEOLOGICA, GEOMORFOLOGICA, IDROGEOLOGICA PER LA RICHIESTA DI VARIANTE AL PIANO REGOLATORE GENERALE PER LA RIGENERAZIONE URBANA DI VIA FERRARI DI MONTORIO AL VOMANO (TE).

COMMITTENTE: COMUNE DI MONTORIO AL VOMANO


1 – Premessa:

Il presente studio di pre-fattibilità è stato eseguito in relazione all'incarico ricevuto con determina n. 190 del 13/04/2022, in osservanza ai criteri stabiliti dal T.U. "Norme Tecniche per le Costruzioni" D.M. 17/01/2018 con relativa Circolare n. 7 del 21/01/2019 "Aggiornamento delle Norme Tecniche per le Costruzioni" ed in relazione alla L.R. 28/11 "Norme per la riduzione del rischio sismico e modalità di vigilanza e controllo su opere e costruzioni in zone sismiche".

Lo studio geologico è stato eseguito ai fini del rilascio del parere di compatibilità geomorfologica per la Variante al P.R.G. vigente delle aree di via Enzo Ferrari di Montorio al Vomano (TE) con richiesta di cambio di destinazione d'uso:

- da zone direzionali (art. 12.4 N.T.A.) a zone a verde pubblico territoriale (art. 12.4 N.T.A.);
- da zone di espansione C3 (art. 14.3 N.T.A.) a zone a verde pubblico territoriale (art. 12.4 N.T.A.);
- da zone residenziali di recente formazione B2 (art. 14.2 N.T.A.) a zone per attrezzature di interesse comune (art. 13.2 N.T.A.).

L'area di studio ricade nel Foglio n. 140 della Carta d'Italia in scala 1:25.000 della cartografia ufficiale I.G.M., di cui segue stralcio.



L'area ricade indicativamente alle coordinate geografiche (sistema di riferimento WGS84): Lat. 42.58039544°, Long. 13.64370531°.

Le particelle oggetto di variante al PRG per cambio di destinazione d'uso ricadono catastalmente nel Foglio n. 37.

L'area perimetrata ha un'estensione pari a circa 14.320 mq, la destinazione urbanistica ricade in parte in "Zone direzionali (art. 12.4 N.T.A.)", una parte in "Zone di espansione - C3 (art. 14.3 N.T.A.)", una parte in "Zone residenziali di recente formazione - B2 (art. 14.2 N.T.A.)".

Seguono, in ordine, foto satellitare e stralcio mappale con indicate le aree di studio.

Lo studio è stato svolto mediante l'ausilio delle cartografie di riferimento esistenti:

- carta geologica dell'Abruzzo di Centamore in scala 1:100.000;
- carta geologica dell'Abruzzo di Vezzani & Ghisetti in scala 1:100.000;
- carta geologica del progetto CARG Foglio 339 "Teramo" in scala 1:50.000;
- cartografie degli studi di microzonazione sismica di I e III livello del comune di Montorio al Vomano;
- stralci cartografici del Piano Stralcio di Bacino per l'Assetto Idrogeologico (PAI)
 della Regione Abruzzo;
- stralcio cartografico del Piano Stralcio Difesa Alluvioni (PSDA) della Regione Abruzzo;
- stralcio cartografico dell'Inventario Fenomeni Franosi Italiani (progetto IFFI);
- stralcio cartografico del progetto ITHACA (ITaly HAzard from CApable fault)
 proposto dal Servizio Geologico d'Italia ISPRA.

Scopo dello studio è stato valutare la presenza di vincoli e/o impedimenti di carattere geologico, geomorfologico, idrogeologico e sismico delle diverse aree.

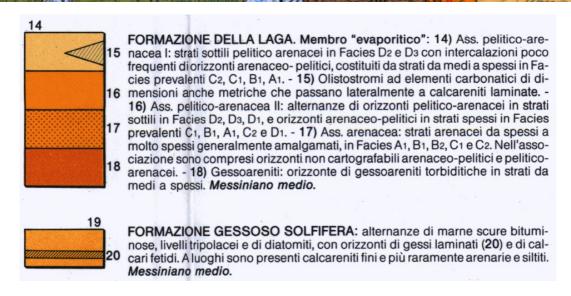
2 – Geologia:

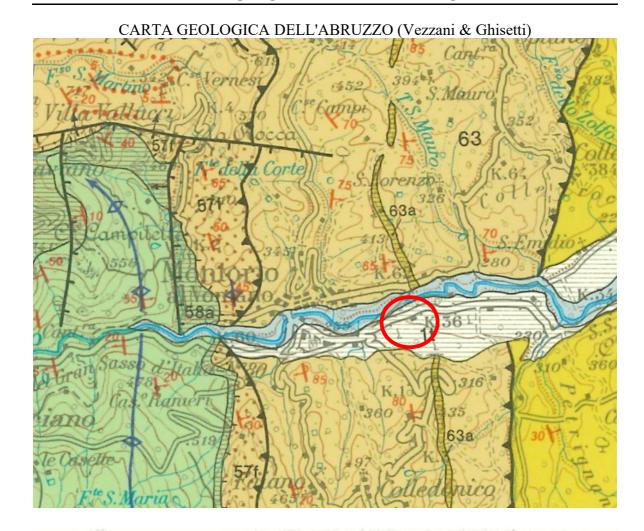
La storia deposizionale dell'area in analisi ha inizio tra il Triassico superiore e il Giurassico inferiore con la formazione della successione calcareo-dolomitica.

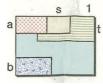
Successivamente, tra il Giurassico inferiore e l'Oligocene, si ha la formazione di successioni stratigrafiche costituite prevalentemente da calcari. Al di sopra delle formazioni Oligoceniche abbiamo la successione Miocenica calcareo-marnosa di ambiente di rampa distale e di avampaese (Marne con Cerrogna e Argille ad Orbulina) su cui si è deposta la formazione della Laga che rappresenta il substrato geologico della zona oggetto di studio.

La Formazione della Laga, depositatasi nel Miocene superiore, precisamente nel Messiniano (circa tra 7,2 e 5,3 milioni di anni fa), è caratterizzata da una vastissima successione terrigena sin-orogenica che può raggiungere spessori anche di 3000 m ed è costituita da un corpo torbiditico silicoclastico. La successione è caratterizzata da una successione prevalentemente arenacea con livelli di argille marnose, in strati spessi e banchi a cui si intercala un livello gessarenitico e da una parte superiore più pelitica costituita da strati arenacei più sottili (nei quali è intercalato anche un livello tufitico) e prevalenti livelli di argille marnose. Queste associazioni litologiche presentano rapporti variabili delle loro caratteristiche sia in senso verticale che laterale ma hanno la tendenza alla diminuzione della granulometria, dello spessore degli strati e del rapporto arenaria/argilla verso l'alto. Sull'associazione tra l'orizzonte arenaceo e l'orizzonte pelitico e sulla loro relazione nelle varie zone si è suddivisa la formazione della Laga in tre membri, dal basso verso l'alto: membro pre-evaporitico , membro evaporitico (che rappresenta in particolare il substrato geologico dell'area oggetto di intervento) con il livello guida delle gessareniti, e membro post-evaporitico.

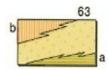
L'assetto geologico locale è stato ricostruito attraverso l'utilizzo della carta geologica d'Abruzzo di Centamore e di Ghisetti & Vezzani in scala 1:100.000, la carta geologica d'Italia del progetto CARG – Foglio 349 "Gran Sasso d'Italia" in scala 1:50.000 e la carta geologica degli studi di Microzonazione Sismica di I livello del comune di Montorio al Vomano in scala 1:5.000. Da tali cartografie si osserva che il substrato geologico di

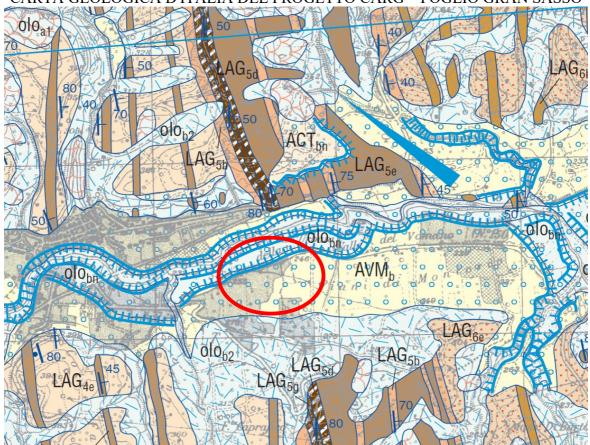

riferimento ha subito diverse variazioni di denominazione nel tempo mantenendo comunque sempre le stesse caratteristiche litologiche. Nella più recente cartografia del CARG il substrato geologico dell'area è definito come *Formazione della Laga – Membro evaporitico o gessarenitico* (LAG5) ed è costituito da depositi torbiditici di ambiente marino profondo alternati a depositi pelitici fini terrigeni sin-orogenetici risalenti al Messiniano.


Il substrato, litologicamente, è costituito da arenarie (prevalenti nell'area in esame) in strati medi, con all'interno livelli risedimentati di gessareniti, alternate con livelli di argille marnose grigio-azzurre in strati sottili e medi. Le stratificazioni del substrato geologico presentano direzione circa nord-sud con immersione verso est e pendenza degli strati di circa 80°.


Nella zona di interesse il substrato geologico risulta coperto dalla presenza di depositi colluviali di versante di spessore variabile poggianti sui depositi alluvionali del fiume Vomano (come evidenziato nello stralcio cartografico della MZS di I livello) e definiti nella cartografia del CARG come *Sintema di Valle Maielama* (AVM).

Seguono stralci delle Carte Geologiche citate.




Depositi lacustri argilloso-limoso-sabbiosi; depositi fluviali e fluvio-glaciali prevalentemente ghiaioso-sabbiosi; travertini (1). Depositi sabbiosi delle piane costiere (s). Depositi alluvionali terrazzati (t). Detriti di falda e coperture detritico-colluviali; depositi residuali; terre rosse (a). Sedimenti morenici (b). Olocene - Pleistocene superiore.

5b. Unita' di Tossicia

Flysch della Laga. Alternanza torbiditica di arenarie e argille con livelli risedimentati di gessareniti (a) e di calciruditi, conglomerati calcarei e calcareniti laminate, talora intercalati a marne bituminose (b). Spessore: > 1000 m. Messiniano.

CARTA GEOLOGICA D'ITALIA DEL PROGETTO CARG – FOGLIO GRAN SASSO

SINTEMA DI VALLE MAIELAMA

Depositi di versante (a) e detriti di falda (a3) generalmente stratificati e cementati costituiti da ghiaie e brecce con clasti angolosi e subangolosi, poligenici, eterometrici, prevalentemente calcarei o arenacei in base alle litologie dominanti e locali intercalazioni di livelli sabbiososiltosi e paleosuoli di colore da nero a bruno-giallastro o con forti caratteri andici dove sono presenti livelli piroclastici. Spessori fino a 150 m.

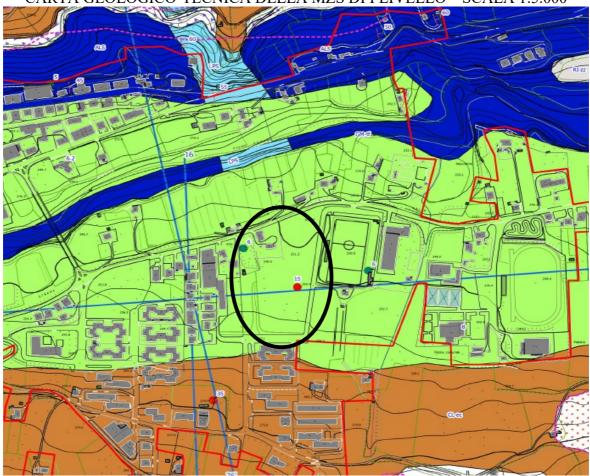
Depositi di conoide alluvionale o fluvioglaciale ghiaioso sabbioso, con dimensioni dai blocchi alle sabbie grossolane, da massivi a stratificati con strati da molto spessi a sottili e stratificazioni incrociate planari e a truogolo, associati a depositi glaciali, e depositi di piana alluvionale composti da ghiaie, sabbie e silt, con stratificazione incrociata planare e a truogolo o massive. Le ghiaie hanno clasti da arrotondati a sub-angolosi di dimensioni da centimetriche a decimetriche nelle piane alluvionali e fino alle dimensioni dei blocchi nelle conoidi alluvionali, cementazione variabile (generalmente alta nei settori montani)(b). Spessore massimo 20 m.

Till indifferenziato costituito da depositi eterometrici massivi o grossolanamente stratificati, con dimensioni dai blocchi alle ghiaie fini, clasti da angolosi a sub-arrotondati, comunemente molto cementati (c₁). Spessore fino a 30 m. Giacciono in discordanza sul sintema più antico e talora su un paleosuolo fersiallitico (suolo Eemiano). PLEISTOCENE sup.

FORMAZIONE DELLA LAGA

membro di Teramo (LAG₆)

LAGen LAG



Prevalenti strati medì e sottili pelitico arenacei in facies D2, con sporadici orizzonti arenaceopelitici in facies C2, rapporto S/A <1 associazione pelitico-arenacea (LAG₆₆). Strati arenaceopelitici tabulari, medi e spessi, gradati inferiormente e laminati superiormente. Sequenza completa di Bouma (facies C e subordinatamente D1 e D2), con rapporto S/A >>1 associazione arenaceo-pelitica II (LAGm). Spessore affiorante circa 1100 metri.

membro gessarenitico (LAG₅)

Caratterizzato dalla presenza diffusa di peliti scure e scarsa cementazione degli orizzonti arenacei. Strati medi e spessi con rapporto S/A > 1, seguenza completa di Bouma (facies C e subordinatamente D1 e D2) associazione arenaceo-pelitica II (LAG₅₀). Strati spessi, generalmente amalgamati di gessareniti risedimentate (facies B e C) con spessore complessivo di 20-40 m orizzonte guida gessarenitico (LAG_{5g}). Strati tabulari medi e subordinatamente spessi, in facies D2 e D3, con rapporto S/A da <1 a <<1 associazione pelitico-arenacea (LAGs,). Strati arenacei spessi a granulometria medio-fine, facies prevalenti C e B, rapporto S/A>>1 associazione arenaceo-pelitica I (LAG56). Spessore affiorante circa 1000 metri.

CARTA GEOLOGICO-TECNICA DELLA MZS DI I LIVELLO – SCALA 1:5.000

Terreni di copertura

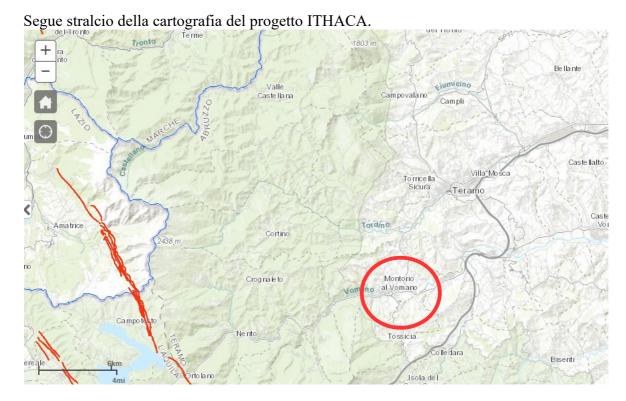
GMfd – Ghiale limose, miscela di ghiala, sabbia e limo; di falda di detrito

CLec – Argille inorganiche di medio-bassa plasticità, argille ghiaiose o sabbiose, argille limose, argille magre; eluvio colluviali

CLtf – Argille inorganiche di medio-bassa plasticità, argille ghiaiose o sabbiose, argille limose, argille magre; di terrazzo fluviale

RI – Terreni contenenti resti di attività antropica

Substrato Geologico

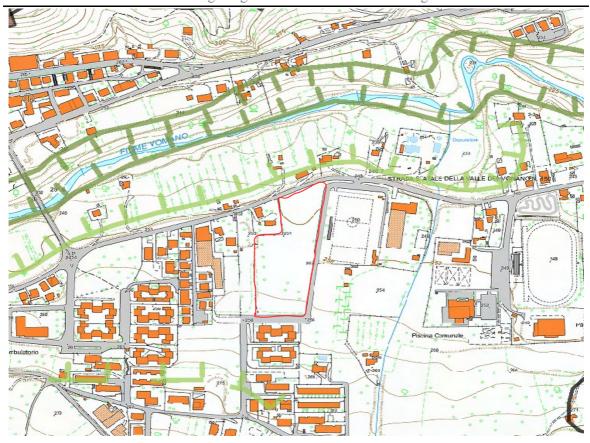

LPS – Lapideo stratificato

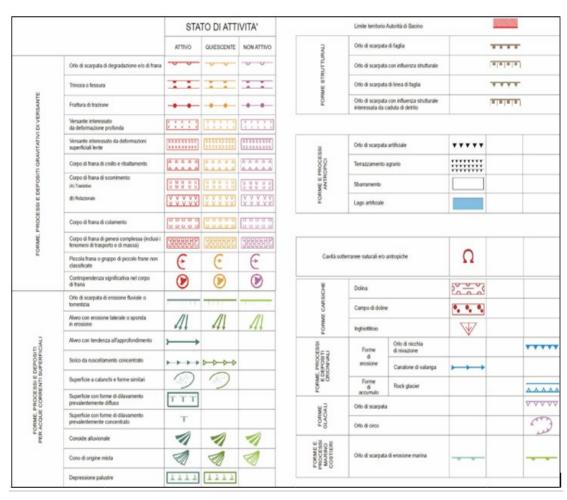
ALS – Alternanza di litotipi, stratificato

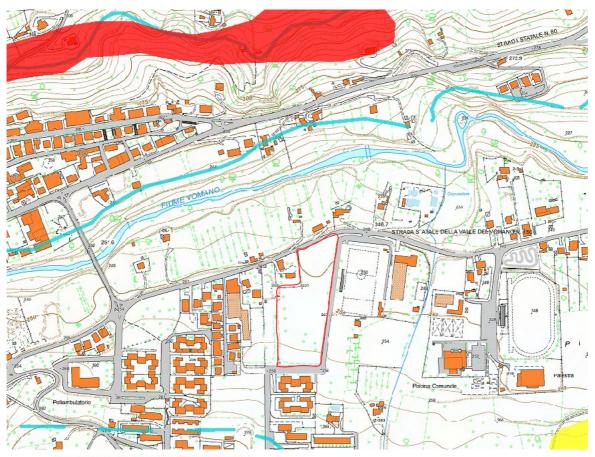
SFALS – Alternanza di litotipi, stratificato, fartturato/alterato

Nella cartografia di riferimento di Ghisetti & Vezzani è segnalata la presenza di un sovrascorrimento ad ovest dell'area oggetto di studio ad una distanza di oltre 1500 metri rispetto al sito di intervento. Dai rilevamenti eseguiti non sono state osservate particolari evidenze morfologiche di una sua presenza inoltre, esso, se presente, è sicuramente legato alla fase sin-orogenica del Pliocene superiore per cui si presenta chiaramente inattivo e non genera pericoli per il sito di intervento.

Non si rileva infine la presenza di faglie attive in prossimità del sito in esame come confermato dal progetto ITHACA (ITaly HAzard from CApable fault) proposto dal Servizio Geologico d'Italia – ISPRA, che sintetizza le informazioni disponibili sulle faglie attive e capaci che interessano il territorio italiano. Come ben visibile dalla cartografia sotto riportata le faglie attive più vicine all'aerea sono quelle che bordano il lago di Campotosto, poste quindi a notevole distanza, e che non generano pertanto particolari problematiche sismiche per l'area di previsto intervento.

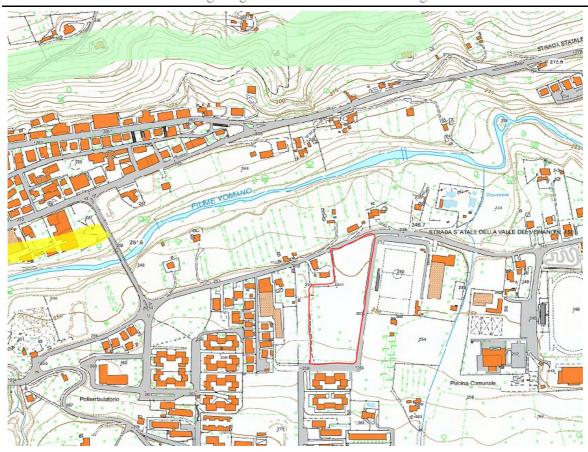

3 - Geomorfologia:


L'area di studio è posta alla quota di circa 265 metri s.l.m. nell'ambito del comune di Montorio al Vomano, in area perfettamente pianeggiante, in destra idrografica dell'omonimo fiume.


L'area si presenta perfettamente stabile e esente da problematiche legate a possibili dissesti in atto e/o potenziali che possano inficiarne la stabilità come confermato dalla cartografie di riferimento del PAI (Piano per l'Assetto Idrogeologico) e del progetto IFFI (Inventario Fenomeni Franosi Italiani) dalle quali si osserva la perfetta regolarità e stabilità dell'area. Nella carta geomorfologica del PAI, ad una distanza di oltre 30 metri rispetto al sito di interesse, è segnalata la presenza di un orlo di scarpata di erosione fluviale e/o torrentizia che, a causa della sua inattività, non genera alcun tipo di pericolo e quindi rischio nelle rispettive cartografie del PAI.

Le aree di intervento risultano inoltre esenti da vincolistiche legate a possibili fenomeni di esondazione fluviale in quanto poste al di fuori delle vincolistiche trasposte nella cartografia del PSDA (Piano Stralcio Difesa Alluvioni) data la notevole distanza dal fiume Vomano, di oltre 140 metri, passante a nord del sito.

Seguono, in ordine, stralci carta geomorfologica, carta della pericolosità e carta del rischio del PAI, stralcio carta del progetto IFFI, e stralcio carta della pericolosità del PSDA.

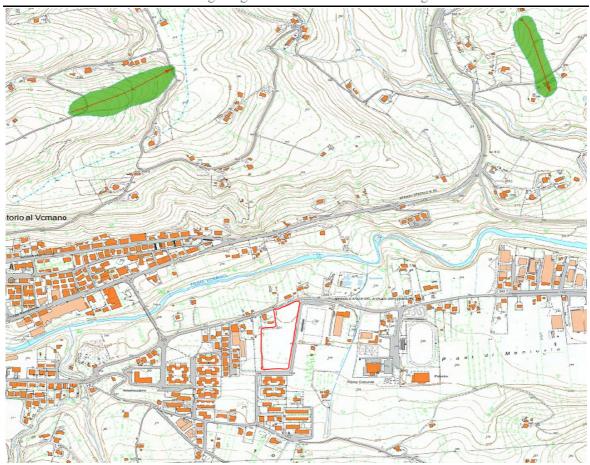


CLASSI DI PERICOLOSITA'

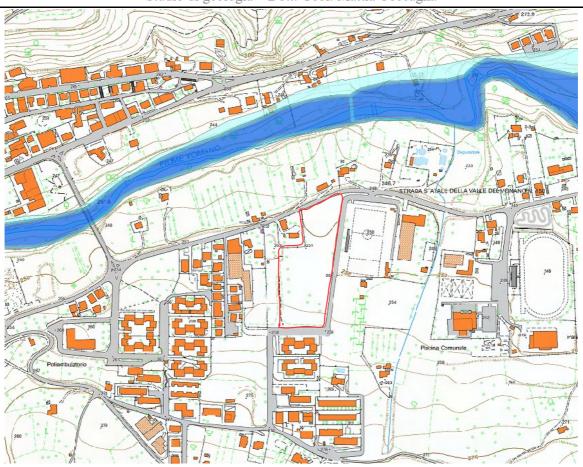
PAI - Piano per l'assetto Idrogeologico - Carta del Rischio -Molto elevato R4

R4

PAI - Piano per l'assetto Idrogeologico - Carta del Rischio -Elevato R3


R3

PAI - Piano per l'assetto Idrogeologico - Carta del Rischio -Medio R2


R2

PAI - Piano per l'assetto Idrogeologico - Carta del Rischio - Moderato R1

R1

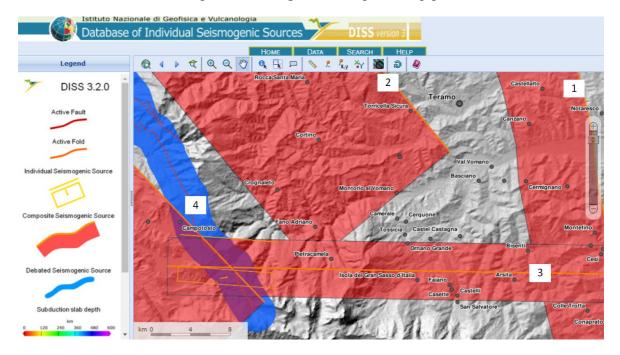
PSDA - Piano Stralcio di Difesa dalle Alluvioni - Pericolosità

PERICOLOSI

P1 - pericolosita moderata

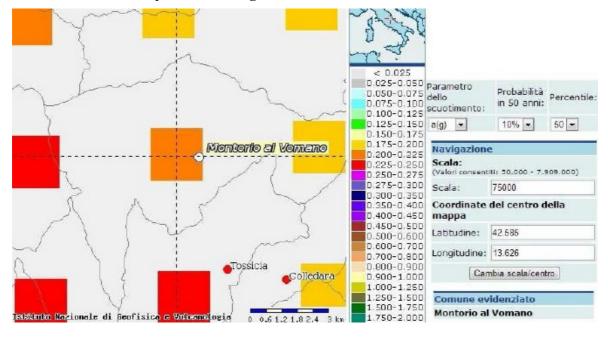
P2 - pericolosita media

P3 - pericolosita elevata

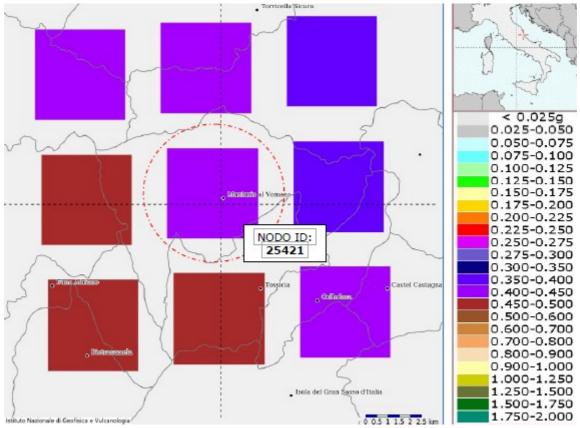

P4 - pericolosita molto elevata

4 - Sismicità e risposta sismica locale:

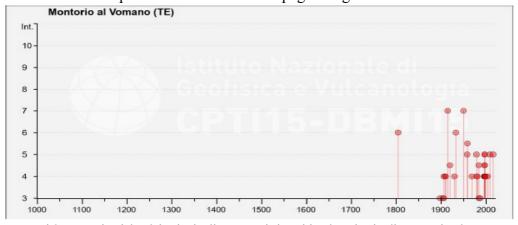
L'area di intervento è ubicata nel comune di Montorio al Vomano (TE) classificato come "zona sismica 2" con l'O.P.C.M. 3274 del 20 marzo 2003 "elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica".


La pericolosità sismica di un territorio è rappresentata dalla frequenza e dalla forza dei terremoti che lo interessano, ovvero dalla sua sismicità. Viene definita come la probabilità che in una data area ed in un certo intervallo di tempo si verifichi un terremoto che superi una soglia di intensità, magnitudo o accelerazione di picco (Pga) di nostro interesse.

Secondo il database dell'INGV, l'area oggetto di studio si trova nel tratto terminale sud della sorgente sismogenetica denominata Bore – Montefeltro – Fabriano - Laga (indicata con il numero 2 nell'immagine seguente) caratterizzata da magnitudo massima attesa Mw di 6.2 scaricabile dal sito: http://diss.rm.ingv.it/dissmap/dissmap.phtml

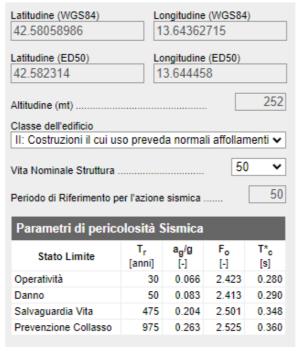


DISS-ID	DISS-ID ITC9027							
Name								
Compiler(s)	Bore-Montefeltro-Fabriano-Laga							
	Burrato P.(1), Mariano S.(1)							
Contributor(s)	Burrato P.(1), Mariano S.(1)							
Affiliation(s)	I) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy							
Created	08-Jan-2005							
Updated	17-May-201	12						
Display map								
Related sources	ITIS058	ITIS047 ITIS0	48 ITIS049 ITIS055 ITIS135					
Departmen		OHALITY	Emperior					
PARAMETER		QUALITY	EVIDENCE					
PARAMETER Min depth [km]	12.0	QUALITY	EVIDENCE Based on structural geology and geodynamic constraints.					
	12.0		Based on structural geology and					
Min depth [km]		OD	Based on structural geology and geodynamic constraints. Based on structural geology and	nd				
Min depth [km]	22.0	OD OD	Based on structural geology and geodynamic constraints. Based on structural geology and geodynamic constraints. Based on geological constraints and					
Min depth [km] Max depth [km] Strike [deg] min max	22.0 90160	OD OD OD	Based on structural geology and geodynamic constraints. Based on structural geology and geodynamic constraints. Based on geological constraints an structural geology. Based on geological constraints and					
Min depth [km] Max depth [km] Strike [deg] min max Dip [deg] min max	22.0 90160 2055 70110	OD OD OD	Based on structural geology and geodynamic constraints. Based on structural geology and geodynamic constraints. Based on geological constraints an structural geology. Based on geological constraints an structural geology.					


L'area oggetto di studio presenta valori, espressi in termini di accelerazione orizzontale massima [PGA, Peak Ground Acceleration - picco di accelerazione orizzontale del suolo, definita anche come a(g) dall'OPCM 3519/2006], con probabilità d'eccedenza del 10% in 50 anni (ovvero tempo di ritorno di 475 anni), riferiti a suoli rigidi orizzontali (Vs > 800 m/s) di 0,200 ÷ 0,225 g come osservabile nella mappa dello scuotimento dell'INGV scaricabile dal sito: http://esse1.mi.ingv.it/

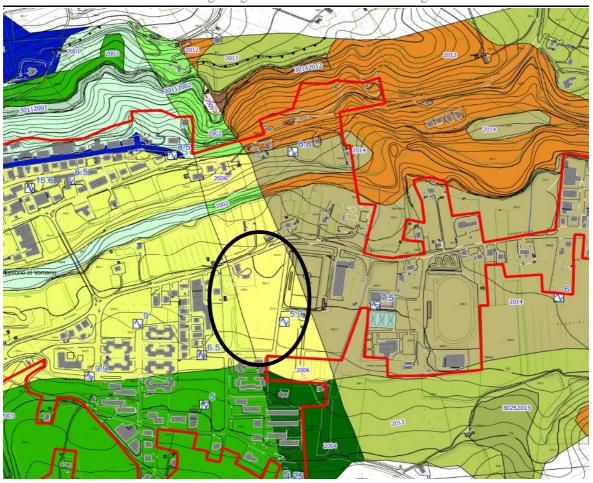
I valori espressi in termini di Spettro di risposta Elastico in funzione del periodo T [SA (accelerazione in funzione del periodo di vibrazione), definito Se(T) in NTC18], con probabilità d'eccedenza del 10% in 50 anni, riferiti a suoli rigidi orizzontali (Vs > 800 m/s) sono di 0,400 ÷ 0,450 g. scaricabile dal sito: http://esse1.mi.ingv.it/

In relazione a quanto descritto nel catalogo parametrico dei terremoti italiani CPTI15 dell'INGV scaricabili dal sito http://emidius.mi.ingv.it/CPTI15-DBMI15 l'area risulta a sismicità medio-alta relazionata alla presenza dei maggiori terremoti registrati nell'area di Montorio al Vomano riportati nella tabella della pagina seguente.

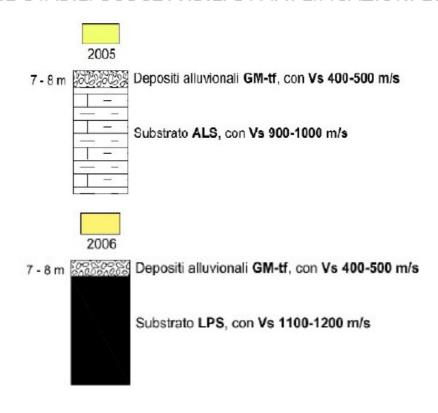


Intensità macrosismiche dei principali terremoti risentiti nel territorio di Montorio al Vomano

Intensità	Anno Me Gi Ho Mi	Area epicentrale	NMDP	Io	Mw
6	1804 05 22 19 15	Gran Sasso	24	8	5.42
NF	1897 04 27 02 17 5	Maiella	27	5	4.21
3	1898 06 27 23 38	Reatino	186	8	5.50
NF	1898 08 25 16 37 4	Valnerina	67	7	5.03
NF	1899 02 07 12 35 3	Appennino umbro-marchigiano	49	4	4.04
NF	1899 04 21 00 57 5	Narni	45	4	3.96
3	1904 09 02 11 21	Maceratese	59	5-6	4.63
4	1906 01 29 15 05	Valle del Tronto	50	5	4.28
3	1906 07 01 00 50	Reatino	41	5	4.29
2-3	1908 03 17 03 59	Marche meridionali	54	5-6	4.61
NF	1910 06 29 13 52	Valnerina	58	7	4.93
4	1910 12 22 12 34	Monti della Laga	19	5	4.30
4	1910 12 26 16 30	Monti della Laga	50	5-6	4.56
7	1915 01 13 06 52 4	Marsica	1041	11	7.08
4-5	1920 02 10 23 57	Monti Sibillini	18	5	4.30
4	1930 11 09 01 33	Monti Sibillini	17	5	4.31
6	1933 09 26 03 33 2	Maiella	325	9	5.90
7	1950 09 05 04 08	Gran Sasso	386	8	5.69
5	1958 06 24 06 07	Aquilano	222	7	5.04
5-6	1959 01 01 23 58 1	Teramano	46	5	4.33
4	1969 09 26 23 40 3	Teramano	97	5	4.39
5	1979 09 19 21 35 3	Valnerina	694	8-9	5.83
4	1980 02 28 21 04 4	Valnerina	146	6	4.97
4	1980 11 23 18 34 5	Irpinia-Basilicata	1394	10	6.81
4-5	1984 05 07 17 50	Monti della Meta	912	8	5.86
3	1984 05 11 10 41 4	Monti della Meta	342	7	5.47
3	1987 07 03 10 21 5	Costa Marchigiana	359	7	5.06
NF	1990 05 05 07 21 2	Potentino	1375		5.77
NF	1992 08 25 02 25 4	Aquilano	63	5	4.11
NF	1994 06 02 16 41 2	Aquilano	60	4-5	3.99
NF	1994 06 02 17 38 1	Aquilano	106	5	4.21
4	1996 10 20 19 06 5	Appennino laziale-abruzzese	100	5	4.36
4-5	1997 09 26 00 33 1	Appennino umbro-marchigiano	760	7-8	5.66
5	1997 09 26 09 40 2	Appennino umbro-marchigiano	869	8-9	5.97
4	1997 10 03 08 55 2	Appennino umbro-marchigiano	490		5.22
4-5	1997 10 06 23 24 5	Appennino umbro-marchigiano	437		5.47
5	1997 10 14 15 23 1	Valnerina	786		5.62
4	1997 11 09 19 07 3	Valnerina	180		4.87
4	1998 04 05 15 52 2	Appennino umbro-marchigiano	395		4.78
NF	1998 08 15 05 18 0	Reatino	233	5-6	4.42
4	1999 10 10 15 35 5	Alto Reatino	79	4-5	4.21
NF	2003 05 25 17 15 1	Ascolano	88	4-5	3.81
4	2004 12 09 02 44 2	Teramano	213	5	4.09
NF	2005 12 15 13 28 3	Val Nerina	350	5	4.14
5	2009 04 06 01 32 4	Aquilano	316	9-10	6.29
5	2016 08 24 01 36 3	Monti della Laga	221	10	6.18
F	2017 01 18 10 14 0	Aquilano	280		5.70

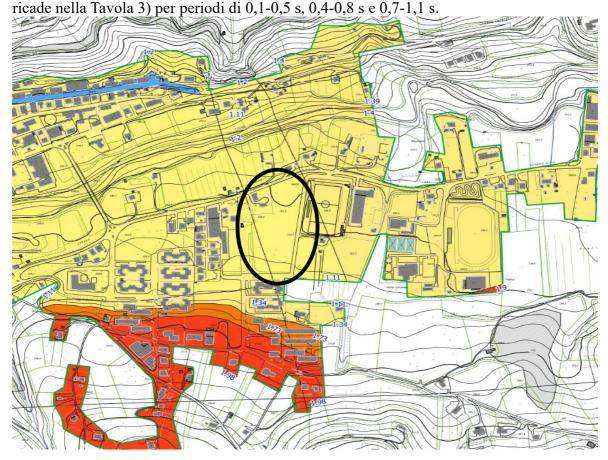

Legenda: Mw= Magnitudo Momento; Io=Intensità Macrosismica epicentrale; NMDP= Numero di osservazioni Macrosismiche; Int(MCS)= Intensità scala MCS

Seguono dati relativi alle coordinate geografiche e ai parametri di pericolosità sismica previsti dalle vigenti NTC.

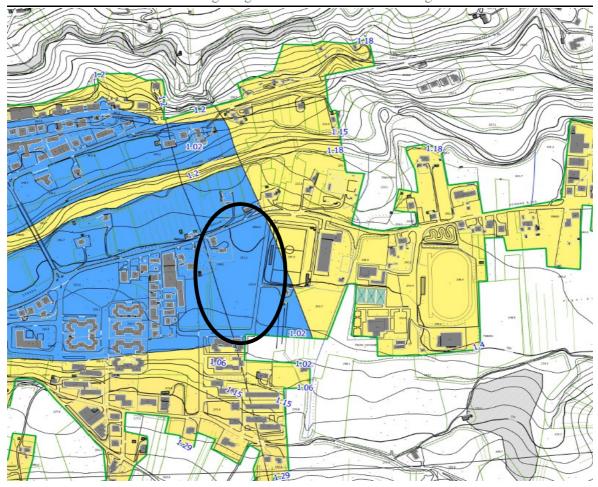


Lo studio di microzonazione sismica di I livello del comune di Montorio al Vomano individua nell'area oggetto di studio "zone stabili suscettibili di amplificazioni locali". L'area oggetto di richiesta di variante al P.R.G. ricade quasi interamente nella **microzona** 2006 caratterizzata dalla presenza di depositi alluvionali sabbiosi e ghiaiosi, di spessore compreso tra 7 e 8 metri e con Vs compresa tra 400 e 500 m/s, sormontanti il substrato geologico prevalentemente arenaceo con Vs compreso tra 1100 e 1200 m/s. Una piccola porzione di sud-ovest risulta ricadere nella **microzona** 2005 che si differenzia dalla 2006 per la variabilità di litotipi del substrato geologico costituito da arenarie intercalate a argille marnose grigio-azzurre con Vs compreso tra 900 e 1000 m/s

Segue stralcio cartografico delle Microzone Omogenee in Prospettiva Sismica (MOPS)

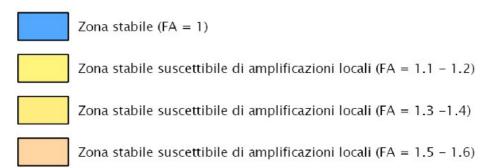


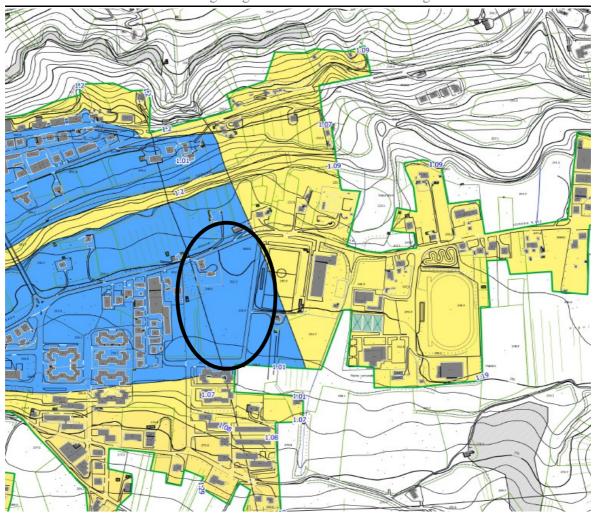
ZONE STABILI SUSCETTIBILI DI AMPLIFICAZIONI LOCALI


Lo studio di microzonazione sismica di III livello del comune di Montorio al Vomano conferma quanto emerso nel I livello e vengono quindi segnalate "zone stabili suscettibili di amplificazioni locali" evidenziando inoltre i diversi fattori di amplificazione FA per i diversi range di periodo.

Seguono, in ordine, i 3 stralci relativi alle carte dei fattori di amplicazione (il sito in esame

Microzonazione sismica di livello 3 Zone stabili e stabili suscettibili di amplificazioni locali

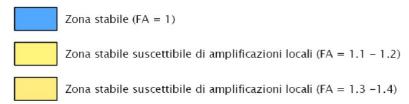



Legenda

Zone di attenzione per instabilità

ZA fr – Zona di attenzione per instabilità di versante

Microzonazione sismica di livello 3



Legenda

Zone di attenzione per instabilità

ZA fr – Zona di attenzione per instabilità di versante

Microzonazione sismica di livello 3 Zone stabili e stabili suscettibili di amplificazioni locali

5 – Considerazioni finali:

Lo studio geologico eseguito ai fini del rilascio del parere di compatibilità geomorfologica per la Variante al P.R.G. vigente con richiesta di cambio di destinazione e d'uso delle aree di via Ferrari di Montorio al Vomano (TE) non ha rilevato l'assenza di forma morfologiche che possano inficiare la stabilità delle aree oggetto di studio. L'area di intervento risulta esente da tutte le vincolistiche previste nelle cartografie di riferimento del PAI e del PSDA. Le aree oggetto di richiesta per il cambio di destinazione d'uso sono così riassunte:

- da zone direzionali (art. 12.4 N.T.A.) a zone a verde pubblico territoriale (art. 12.4 N.T.A.);
- da zone di espansione C3 (art. 14.3 N.T.A.) a zone a verde pubblico territoriale (art. 12.4 N.T.A.);
- da zone residenziali di recente formazione B2 (art. 14.2 N.T.A.) a zone per attrezzature di interesse comune (art. 13.2 N.T.A.).

Le Linee Guida Regionali per le relazioni geologiche a supporto delle varianti al PRG prevedono la possibilità di fare riferimento agli studi di microzonazione sismica di I livello redatti dai comuni e quindi non risulta necessario eseguire lo studio puntuale secondo gli indirizzi e criteri della Microzonazione Sismica Regionale.

La richiesta di Variante al Piano Regolatore Generale è perfettamente compatibile con le condizioni geomorfologiche del territorio.

Si resta a disposizione per qualsiasi chiarimento in merito al presente elaborato e per eventuali consulenze durante le successive fasi progettuali.

Montorio al Vomano (TE), maggio 2022

Dott. Geol. Mattia Coccagna

